Nitrogen-doped graphene nanoribbons as efficient metal-free electrocatalysts for oxygen reduction.

نویسندگان

  • Mingkai Liu
  • Yanfang Song
  • Sixin He
  • Weng Weei Tjiu
  • Jisheng Pan
  • Yong-Yao Xia
  • Tianxi Liu
چکیده

Nitrogen-doped graphene nanoribbon (N-GNR) nanomaterials with different nitrogen contents have been facilely prepared via high temperature pyrolysis of graphene nanoribbons (GNR)/polyaniline (PANI) composites. Here, the GNRs with excellent surface integration were prepared by longitudinally unzipping the multiwalled carbon nanotubes. With a high length-to-width ratio, the GNR sheets are prone to form a conductive network by connecting end-to-end to facilitate the transfer of electrons. Different amounts of PANI acting as a N source were deposited on the surface of GNRs via a layer-by-layer approach, resulting in the formation of N-GNR nanomaterials with different N contents after being pyrolyzed. Electrochemical characterizations reveal that the obtained N8.3-GNR nanomaterial has excellent catalytic activity toward an oxygen reduction reaction (ORR) in an alkaline electrolyte, including large kinetic-limiting current density and long-term stability as well as a desirable four-electron pathway for the formation of water. These superior properties make the N-GNR nanomaterials a promising kind of cathode catalyst for alkaline fuel cell applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts

Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...

متن کامل

N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations

Electrocatalysts are essential to two key electrochemical reactions, oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in renewable energy conversion and storage technologies such as regenerative fuel cells and rechargeable metal–air batteries. Here, we explored N-doped graphene as costeffective electrocatalysts for these key reactions by employing density functional theory (D...

متن کامل

Facile Synthesis of N, S-Doped Graphene from Sulfur Trioxide Pyridine Precursor for the Oxygen Reduction Reaction

In the work presented here, nitrogen and sulfur co doped on porous graphene was synthesized using pyrolysis at 900°C for 2h and the hydrothermal technique at 180°C for 24h as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. All the materials have been characterized by Scanning Electron Microscopy (SEM) and X-ray photo-electron spectroscopy (XPS). Moreov...

متن کامل

One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction.

Novel N, S co-doped graphene (NSG) was prepared by annealing graphene oxide with thiourea as the single N and S precursor. The NSG electrodes, as efficient metal-free electrocatalysts, show a direct four-electron reaction pathway, high onset potential, high current density and high stability for the oxygen reduction reaction.

متن کامل

Covalent functionalization based heteroatom doped graphene nanosheet as a metal-free electrocatalyst for oxygen reduction reaction.

Oxygen reduction reaction (ORR) is an important reaction in energy conversion systems such as fuel cells and metal-air batteries. Carbon nanomaterials doped with heteroatoms are highly attractive materials for use as electrocatalysts by virtue of their excellent electrocatalytic activity, high conductivity, and large surface area. This study reports the synthesis of highly efficient electrocata...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 6 6  شماره 

صفحات  -

تاریخ انتشار 2014